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Introduction: spectral methods for graph clustering

Spectral methods:

Input Matrix M (e.g., L, L, A);
Output Node labeling σ̂ ∈ {−1, 1}n.

Algorithm Compute v (2), the eigenvector
associated with the second
smallest (or largest) eigenvalue
of M;

- Let σ̂i = sign
(
v
(2)
i

)
for

i = 1, . . . , n.

Aim of this talk
Explain why spectral methods can fail when nodes have geometric
attributes, and propose a solution.

[1] Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslov. Math. J.
25(4), 619–633 (1975)
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Soft Geometric Block Model (SGBM)

Model parameters
number of nodes n, geometric dimension d and two measurables
functions Fin,Fout : Td → [0, 1].

Model definition
▶ Set of nodes V = {1, . . . , n};
▶ Each node i has a random position Xi on the torus Td ;

▶ Each node i is randomly assigned a community label σi ∈ {−1, 1};
▶ Each pair of nodes (i , j) is connected with probability

pij =

{
Fin (Xi − Xj) if σi = σj ,

Fout (Xi − Xj) if σi ̸= σj .

Inference problem
Estimate the latent node labelling σ given the observation of A, and
possibly the knowledge of Fin,Fout.
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Example: GBM

Geometric Block Model (GBM) [1]
Consider d = 1 and Fin(x) = 1(|x | ≤ rin), Fout(x) = 1(|x | ≤ rout) with
fixed rin > rout.

[1] Galhotra, Mazumdar, Pal, Saha: The geometric block model. In Proceedings of the AAAI Conference on Artificial Intelligence.
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Spectral clustering on the GBM (1)

Geometric partitioning!
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Spectral clustering on the GBM (2)

The eigenvector v4 associated with λ4 (the fourth smallest eigenvalue)
gives the partition into 4 regions.
The eigenvector v6 divides the circle into 6 regions, and so on... Nothing
useful?
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Spectral clustering on the GBM (3)

The eigenvector v10 gives accuracy 87%!
It contains useful information about the true community structure.
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How to choose the best eigenvector?
Suppose the two clusters are V1 = {1, . . . , n/2}, V2 = {n/2 + 1, . . . , n}.
The ideal vector for recovery is then

v∗ = (1, . . . , 1︸ ︷︷ ︸
n/2

,−1, . . . ,−1︸ ︷︷ ︸
n/2

)T .

Denote

µin =

∫
Td

Fin(x)dx average intra-cluster edge density,

µout =

∫
Td

Fout(x)dx average inter-cluster edge density.

Hence v∗ is an eigenvector of EA, associated to λ∗ such that

λ∗ = E
n/2∑
j=1

Aij − E
n∑

j=n/2+1

Aij =
(µin − µout)n

2

Idea: take the eigenvector ṽ of A associated with λ̃ the closest to
λ∗ = (µin − µout)n/2
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Higher-order spectral clustering algorithm

Higher-order spectral clustering algorithm (HOSC):

1. Compute the eigenvalues of the adjacency matrix A;

2. Take the eigenvector ṽ associated with the eigenvalue λ̃ closest to
λ∗ = (µin − µout)n/2;

3. Let σ̂i = sign(ṽi ) for i = 1, . . . , n.

Clustering error: ℓ(σ, σ̂) = min{Ham(σ, σ̂),Ham(σ,−σ̂)} where Ham is
the Hamming distance.

Theorem (Avrachenkov, Bobu, Dreveton 2021)
In the GBM, for almost all choices of parameters (rin, rout), we have with
high probability ℓ(σ, σ̂) = o(n).

Remark. We can have ℓ(σ, σ̂) = o(1) with an additional step (not shown
here).
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3. Let σ̂i = sign(ṽi ) for i = 1, . . . , n.

Clustering error: ℓ(σ, σ̂) = min{Ham(σ, σ̂),Ham(σ,−σ̂)} where Ham is
the Hamming distance.

Theorem (Avrachenkov, Bobu, Dreveton 2021)
In the GBM, for almost all choices of parameters (rin, rout), we have with
high probability ℓ(σ, σ̂) = o(n).

Remark. We can have ℓ(σ, σ̂) = o(1) with an additional step (not shown
here).

13/24



Higher-order spectral clustering algorithm

Higher-order spectral clustering algorithm (HOSC):

1. Compute the eigenvalues of the adjacency matrix A;
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Spectrum of the SGBM
For k ∈ Zd and F : Td → R we define the Fourier transform as

F̂ (k) =

∫
Td

F (x)e−2iπ⟨k,x⟩ dx .

Theorem (Informal statement)
Assume that Fin(0),Fout(0) are equal to the Fourier series of Fin,Fout

evaluated at 0. Then, the limiting spectrum of the adjacency matrix of
the SGBM is

S =

{
F̂in(k) + F̂out(k)

2
n for k ∈ Zd

}⋃{
F̂in(k)− F̂out(k)

2
n for k ∈ Zd

}
.

This extends [1] to clustered geometric graphs.

Good news: λ∗ = µin−µout

2 n = F̂in(0)−F̂out(0)
2 n ∈ S .

Now: Need to establish that λ∗ is of multiplicity one and is separated
from other eigenvalues.
[1] Bordenave, C. (2008). Eigenvalues of Euclidean random matrices. Random Structures Algorithms, 33(4), 515-532.
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Separation of λ∗

Proposition
Consider the adjacency matrix A of an SGBM and assume that:

µin − µout ̸= F̂in(k) + F̂out(k), ∀k ∈ Zd , (1)

µin − µout ̸= F̂in(k)− F̂out(k), ∀k ∈ Zd\{0}, (2)

with µin ̸= µout. Then:

▶ the eigenvalue of A the closest to λ∗ = µin−µout

2 n is of multiplicity
one;

▶ there exists ϵ > 0 such that for large enough n every other
eigenvalue is at a distance at least ϵn.

Remark 1. This implies that µin and µout are constant, so the average
degrees are Θ(n).

Remark 2. In the case of the GBM (Fin(x) = 1(|x | ≤ rin) and
Fout(x) = 1(|x | ≤ rout)), we showed that conditions (1)-(2) hold true for
all but a zero Lebesgue measure set of parameters rin, rout.
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Numerical experiments on GBM (1)
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Figure: Blue curve: evolution of the accuracy with rin, for a GBM with
n = 3000 and rout = 0.06. Red curve: index of the ideal eigenvector.
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Numerical experiments on GBM (2)
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Figure: Accuracy obtained on 1-dimensional GBM for different clustering
methods. Results are averaged over 50 realizations, and error bars show the
standard error.

[1] Galhotra, Mazumdar, Pal, Saha: The geometric block model. In Proceedings of the AAAI Conference on Artificial Intelligence.
[2] Galhotra, Mazumdar, Pal, Saha: Connectivity of random annulus graphs and the geometric block model. Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (2019)
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Real data set (1)

k-nearest neighbour graph (k = 10) of 1000 images of digits (7,9)
selected from MNIST.
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Figure: Clustering accuracy per eigenvector. Right: all eigenvectors. Left:
zoom on the first 15 eigenvectors.
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Real data set (2)

Same subsample of the MNIST (7,9) data set, representation using the
Kamada-Kawai layout.

(a) True labels (b) 2nd eigenvector (c) 3rd eigenvector

(d) 4th eigenvector (e) 6th eigenvector (f) 9th eigenvector
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Directions of further research

Takeaway message
If you use spectral clustering methods, check higher-order eigenvectors,
they can be more effective! Especially if you deal with geometry.

Future work
▶ Model parameters

Is it possible to determine µin and µout from the observed graph?

▶ More clusters
How to choose the eigenvector(s) if we have K > 2 clusters?

▶ Sparse regime
The current technique does not work if the average degree is o(n).
What to do?

▶ Weighted graphs
Can the results be easily transferred to models with weighted edges
instead of the probability of edge appearance?

Reference: Avrachenkov, Bobu, Dreveton (2021). Higher-order spectral clustering for geometric
graphs. Journal of Fourier Analysis and Applications, 27(2), 22.
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