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Introduction: spectral methods for graph clustering

Spectral methods:
Input Matrix M (e.g., L, L, A);
Output Node labeling o € {—1,1}".

Algorithm Compute v(?)| the eigenvector
associated with the second
smallest (or largest) eigenvalue

of M;
- Let 5; = sign (vi(z)) for
i=1,...,n.

Aim of this talk
Explain why spectral methods can fail when nodes have geometric
attributes, and propose a solution.

[1] Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslov. Math. J.
25(4), 619-633 (1975)
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Soft Geometric Block Model (SGBM)

Model parameters

number of nodes n, geometric dimension d and two measurables
functions Fiy, Fous : T¢ — [0, 1].

Model definition
» Set of nodes V ={1,...,n};
» Each node i has a random position X; on the torus T4,
» Each node i is randomly assigned a community label o; € {—1,1};

» Each pair of nodes (i) is connected with probability

o I:}I, (,)(} - ,><j ) if oj = 0j,
P YR (Xi—X)  ifoi#a;.

Inference problem
Estimate the latent node labelling o given the observation of A, and
possibly the knowledge of Fiy,, Fout.
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Example: GBM

Geometric Block Model (GBM) [1]

Consider d =1 and Fin(x) = 1(|x| < fin), Fous(x) = 1(|x] < rout) with
fixed rp > rout-

[1] Galhotra, Mazumdar, Pal, Saha: The geometric block model. In Proceedings of the AAAI Conference an Artificial Intelligence.
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Spectral clustering on the GBM (1)

Geometric partitioning!
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Spectral clustering on the GBM (2)

The eigenvector v4 associated with A4 (the fourth smallest eigenvalue)
gives the partition into 4 regions.
The eigenvector v divides the circle into 6 regions, and so on... Nothing
useful?
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Spectral clustering on the GBM (3)

The eigenvector vig gives accuracy 87%!
It contains useful information about the true community structure.
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How to choose the best eigenvector?
Suppose the two clusters are V4 ={1,...,n/2}, Vo ={n/2+1,... n}.
The ideal vector for recovery is then

ve =(1,...,1,-1,..., -1,
—_— —
n/2 n/2
Denote

Min = / Fin(x)dx average intra-cluster edge density,
Td

Hout = / Fout(x)dx average inter-cluster edge density.
Td

Hence v, is an eigenvector of EA, associated to A, such that

n/2

A = IEZA,J—E Z ay = 2“"“)
Jj=n/2+1

Idea: take the eigenvector ¥V of A associated with ) the closest to
A = (,Uin - ,Uout)n/2
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Higher-order spectral clustering algorithm

Higher-order spectral clustering algorithm (HOSC):
1. Compute the eigenvalues of the adjacency matrix A;
2. Take the eigenvector V associated with the eigenvalue X closest to
A = (Hin — Hout)n/2;
3. Let g; = sign(¥;) for i=1,...,n.
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Higher-order spectral clustering algorithm

Higher-order spectral clustering algorithm (HOSC):
1. Compute the eigenvalues of the adjacency matrix A;
2. Take the eigenvector V associated with the eigenvalue X closest to
« = (Win — flout)n/2;
3. Let g; = sign(¥;) for i=1,...,n.

Clustering error: ¢(0,0) = min{Ham(o, ), Ham(o, —5)} where Ham is
the Hamming distance.

Theorem (Avrachenkov, Bobu, Dreveton 2021)

In the GBM, for almost all choices of parameters (fin, frout), we have with
high probability ¢(o,c) = o(n).

Remark. We can have ¢(0,0) = o(1) with an additional step (not shown
here).
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Spectrum of the SGBM
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For k € Z9 and F : T9 — R we define the Fourier transform as

F(k) = / F(x)e=2im(kx) gy,
Td

Theorem (Informal statement)

Assume that Fi,(0), Fout(0) are equal to the Fourier series of Fiy, Fout
evaluated at 0. Then, the limiting spectrum of the adjacency matrix of
the SGBM is

S = {’Wn forkGZd}U{Wn forkGZd}.

This extends [1] to clustered geometric graphs.

in— Fin(0)—Fous (0
Good news: ), = HeSfoutp — () 5 @pes.

Now: Need to establish that A\, is of multiplicity one and is separated

from other eigenvalues.
[1] Bordenave, C. (2008). Eigenvalues of Euclidean random matrices. Random Structures Algorithms, 33(4), 515-532.



Separation of A\,
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Proposition

Consider the adjacency matrix A of an SGBM and assume that:
tin = ftout # Fin(k) + Fout(k), Yk € 27, (1)
Hin — Hout 7é ’Eln(k) - ’Eout(k)v vk € Zd\{o}v (2)

with piy # pous- Then:
> the eigenvalue of A the closest to A\, = H==feutn s of multiplicity
one;
> there exists € > 0 such that for large enough n every other
eigenvalue is at a distance at least en.

Remark 1. This implies that pj, and g, are constant, so the average
degrees are ©(n).

Remark 2. In the case of the GBM (Fi,(x) = 1(|x| < ) and
Fout(x) = 1(x] < fout)), we showed that conditions (1)-(2) hold true for
all but a zero Lebesgue measure set of parameters riy, fout-
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Numerical experiments on GBM (1)
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Figure: Blue curve: evolution of the accuracy with rin, for a GBM with
n = 3000 and rous = 0.06. Red curve: index of the ideal eigenvector.
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Numerical experim

ents on GBM (2)

Evolution of accuracy,

for n = 3000 and rout = 0. 04
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Real data set (1)

k-nearest neighbour graph (k = 10) of 1000 images of digits (7,9)
selected from MNIST.

0.90
>0.82
|S)
Co.74
3
Y 0.66

0.58

0.50

Figure: Clustering accuracy per eigenvector. Right:
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zoom on the first 15 eigenvectors.
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Real data set (2)

Same subsample of the MNIST (7,9) data set, representation using the
Kamada-Kawai layout.

(d) 4th eigenvector (e) 6th eigenvector (f) 9th eigenvector
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Directions of further research

Takeaway message

If you use spectral clustering methods, check higher-order eigenvectors,
they can be more effective! Especially if you deal with geometry.

Future work
> Model parameters
Is it possible to determine i, and oyt from the observed graph?

»> More clusters
How to choose the eigenvector(s) if we have K > 2 clusters?

> Sparse regime
The current technique does not work if the average degree is o(n).
What to do?

> Weighted graphs
Can the results be easily transferred to models with weighted edges
instead of the probability of edge appearance?

Reference: Avrachenkov, Bobu, Dreveton (2021). Higher-order spectral clustering for geometric
graphs. Journal of Fourier Analysis and Applications, 27(2), 22.
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