Higher-order spectral clustering for geometric graphs

K. Avrachenkov² A. Bobu² M. Dreveton^{1,2}

¹ Inria Sophia-Antipolis, France
² EPFL, Switzerland

INFORMS APS – 28 June 2023

Introduction: spectral methods for graph clustering

Spectral methods:

Input Matrix M (e.g., L, \mathcal{L} , A); Output Node labeling $\hat{\sigma} \in \{-1, 1\}^n$. Algorithm Compute $v^{(2)}$, the eigenvector associated with the second smallest (or largest) eigenvalue of M;

- Let
$$
\hat{\sigma}_i = \text{sign}\left(v_i^{(2)}\right)
$$
 for
 $i = 1, ..., n$.

Aim of this talk

Explain why spectral methods can fail when nodes have geometric attributes, and propose a solution.

[1] Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslov. Math. J. 25(4), 619–633 (1975)

[Spectral Clustering on geometric graphs](#page-3-0) [Soft Geometric Block Model \(SGBM\)](#page-3-0) [Failure of spectral clustering on geometric graphs](#page-5-0) [Higher-order spectral clustering \(HOSC\)](#page-10-0) [Proof ingredients](#page-15-0)

[Numerical results](#page-18-0)

[Synthetic data sets](#page-18-0) [Real data set](#page-21-0)

[Spectral Clustering on geometric graphs](#page-3-0) [Soft Geometric Block Model \(SGBM\)](#page-3-0)

[Failure of spectral clustering on geometric graphs](#page-5-0) [Higher-order spectral clustering \(HOSC\)](#page-10-0) [Proof ingredients](#page-15-0)

[Numerical results](#page-18-0)

[Synthetic data sets](#page-18-0) [Real data set](#page-21-0)

Soft Geometric Block Model (SGBM)

Model parameters

number of nodes n , geometric dimension d and two measurables functions $F_{\rm in}, F_{\rm out} : \mathbb{T}^d \to [0,1].$

Model definition

• Set of nodes
$$
V = \{1, \ldots, n\};
$$

- Each node *i* has a random position X_i on the torus \mathbb{T}^d ;
- ► Each node *i* is randomly assigned a community label $\sigma_i \in \{-1, 1\}$;

 \blacktriangleright Each pair of nodes (i, j) is connected with probability

$$
p_{ij} = \begin{cases} F_{\text{in}}(X_i - X_j) & \text{if } \sigma_i = \sigma_j, \\ F_{\text{out}}(X_i - X_j) & \text{if } \sigma_i \neq \sigma_j. \end{cases}
$$

Inference problem

Estimate the latent node labelling σ given the observation of A, and possibly the knowledge of F_{in} , F_{out} . **KORKA STRAIN STRACT**

[Spectral Clustering on geometric graphs](#page-3-0) [Soft Geometric Block Model \(SGBM\)](#page-3-0) [Failure of spectral clustering on geometric graphs](#page-5-0) [Higher-order spectral clustering \(HOSC\)](#page-10-0) [Proof ingredients](#page-15-0)

[Numerical results](#page-18-0)

[Synthetic data sets](#page-18-0) [Real data set](#page-21-0)

Example: GBM

Geometric Block Model (GBM) [1]

Consider $d = 1$ and $F_{\text{in}}(x) = 1(|x| \le r_{\text{in}})$, $F_{\text{out}}(x) = 1(|x| \le r_{\text{out}})$ with fixed $r_{\rm in} > r_{\rm out}$.

[1] Galhotra, Mazumdar, Pal, Saha: The geometric block model. In Proceedings of the AA[AI Co](#page-5-0)n[fere](#page-7-0)[nce](#page-5-0) [on](#page-6-0) [Ar](#page-7-0)[tifi](#page-4-0)[cia](#page-5-0)[l I](#page-9-0)[nt](#page-10-0)[elli](#page-2-0)[ge](#page-3-0)[nc](#page-17-0)e $Q \cap$

Spectral clustering on the GBM (1)

Geometric partitioning!

Spectral clustering on the GBM (2)

The eigenvector v_4 associated with λ_4 (the fourth smallest eigenvalue) gives the partition into 4 regions.

The eigenvector v_6 divides the circle into 6 regions, and so on... Nothing useful?

Spectral clustering on the GBM (3)

The eigenvector v_{10} gives accuracy 87%! It contains useful information about the true community structure.

K ロ ▶ K 御 ▶ K 君 ▶ K 君

[Spectral Clustering on geometric graphs](#page-3-0)

[Soft Geometric Block Model \(SGBM\)](#page-3-0) [Failure of spectral clustering on geometric graphs](#page-5-0) [Higher-order spectral clustering \(HOSC\)](#page-10-0)

[Proof ingredients](#page-15-0)

[Numerical results](#page-18-0)

[Synthetic data sets](#page-18-0) [Real data set](#page-21-0)

How to choose the best eigenvector?

Suppose the two clusters are $V_1 = \{1, ..., n/2\}$, $V_2 = \{n/2 + 1, ..., n\}$. The ideal vector for recovery is then

Denote

$$
\mu_{\text{in}} = \int_{\mathsf{T}^d} F_{\text{in}}(x) dx \quad \text{average intra-cluster edge density,}
$$
\n
$$
\mu_{\text{out}} = \int_{\mathsf{T}^d} F_{\text{out}}(x) dx \quad \text{average inter-cluster edge density.}
$$

Hence v_* is an eigenvector of $\mathbb{E} A$, associated to λ_* such that

$$
\lambda_* = \mathbb{E} \sum_{j=1}^{n/2} A_{ij} - \mathbb{E} \sum_{j=n/2+1}^{n} A_{ij} = \frac{(\mu_{in} - \mu_{out})n}{2}
$$

Idea: take the eigenvector \tilde{v} of A associated with $\tilde{\lambda}$ the closest to $\lambda_* = (\mu_{in} - \mu_{out})n/2$ **KORK EXTERNS ORA**

Higher-order spectral clustering algorithm

Higher-order spectral clustering algorithm (HOSC):

- 1. Compute the eigenvalues of the adjacency matrix A;
- 2. Take the eigenvector \tilde{v} associated with the eigenvalue $\tilde{\lambda}$ closest to $\lambda_* = (\mu_{\rm in} - \mu_{\rm out})n/2;$

KORKAR KERKER STAGG

3. Let $\hat{\sigma}_i = \text{sign}(\tilde{v}_i)$ for $i = 1, \ldots, n$.

13/24

Higher-order spectral clustering algorithm

Higher-order spectral clustering algorithm (HOSC):

- 1. Compute the eigenvalues of the adjacency matrix A;
- 2. Take the eigenvector \tilde{v} associated with the eigenvalue $\tilde{\lambda}$ closest to $\lambda_* = (\mu_{\rm in} - \mu_{\rm out})n/2;$

3. Let
$$
\hat{\sigma}_i = \text{sign}(\tilde{v}_i)
$$
 for $i = 1, ..., n$.

Clustering error: $\ell(\sigma, \hat{\sigma}) = \min\{Ham(\sigma, \hat{\sigma}), Ham(\sigma, -\hat{\sigma})\}$ where Ham is the Hamming distance.

Higher-order spectral clustering algorithm

Higher-order spectral clustering algorithm (HOSC):

- 1. Compute the eigenvalues of the adjacency matrix A ;
- 2. Take the eigenvector \tilde{v} associated with the eigenvalue $\tilde{\lambda}$ closest to $\lambda_* = (\mu_{\rm in} - \mu_{\rm out})n/2;$
- 3. Let $\hat{\sigma}_i = \text{sign}(\tilde{v}_i)$ for $i = 1, \ldots, n$.

Clustering error: $\ell(\sigma, \hat{\sigma}) = \min\{Ham(\sigma, \hat{\sigma}), Ham(\sigma, -\hat{\sigma})\}$ where Ham is the Hamming distance.

Theorem (Avrachenkov, Bobu, Dreveton 2021) In the GBM, for almost all choices of parameters $(r_{\rm in},r_{\rm out})$, we have with high probability $\ell(\sigma, \hat{\sigma}) = o(n)$.

Remark. We can have $\ell(\sigma, \hat{\sigma}) = o(1)$ with an additional step (not shown here).

[Spectral Clustering on geometric graphs](#page-3-0)

[Soft Geometric Block Model \(SGBM\)](#page-3-0) [Failure of spectral clustering on geometric graphs](#page-5-0) [Higher-order spectral clustering \(HOSC\)](#page-10-0) [Proof ingredients](#page-15-0)

[Numerical results](#page-18-0)

[Synthetic data sets](#page-18-0) [Real data set](#page-21-0)

Spectrum of the SGBM

For $k\in\mathbb{Z}^d$ and $F:\mathbf{T}^d\to\mathbb{R}$ we define the Fourier transform as

$$
\widehat{F}(k) = \int_{\mathsf{T}^d} F(x) e^{-2i\pi \langle k, x \rangle} dx.
$$

Theorem (Informal statement)

Assume that $F_{\text{in}}(0)$, $F_{\text{out}}(0)$ are equal to the Fourier series of F_{in} , F_{out} evaluated at 0. Then, the limiting spectrum of the adjacency matrix of the SGBM is

$$
S = \left\{ \frac{\widehat{F}_{\text{in}}(k) + \widehat{F}_{\text{out}}(k)}{2} n \text{ for } k \in \mathbb{Z}^d \right\} \bigcup \left\{ \frac{\widehat{F}_{\text{in}}(k) - \widehat{F}_{\text{out}}(k)}{2} n \text{ for } k \in \mathbb{Z}^d \right\}.
$$

This extends [1] to clustered geometric graphs.

Good news:
$$
\lambda_* = \frac{\mu_{\mathrm{in}} - \mu_{\mathrm{out}}}{2} n = \frac{\widehat{F}_{\mathrm{in}}(0) - \widehat{F}_{\mathrm{out}}(0)}{2} n \in S.
$$

Now: Need to establish that λ_* is of multiplicity one and is separated from other eigenvalues.

[1] Bordenave, C. (2008). Eigenvalues of Euclidean random matrices. Random Structures [Algo](#page-15-0)rit[hms](#page-17-0)[, 3](#page-15-0)[3\(4\),](#page-16-0) [5](#page-17-0)[15](#page-14-0)[-5](#page-15-0)[32.](#page-17-0)
← ロ ▶ ← 伊 ▶ ← 로 ▶ ← 로 ▶ ← 로 ▶ ← 로 ▶ ← 로 ▶ ← 로 ▶ ← 로 ▶ ← 로 ▶ ← 로 ▶ ← 로 ▶ ← 로 → ← 그

Separation of λ_*

Proposition

Consider the adjacency matrix A of an SGBM and assume that:

$$
\mu_{\rm in} - \mu_{\rm out} \neq \widehat{F}_{\rm in}(k) + \widehat{F}_{\rm out}(k), \qquad \forall k \in \mathbb{Z}^d, \tag{1}
$$

$$
\mu_{\rm in} - \mu_{\rm out} \neq \widehat{F}_{\rm in}(k) - \widehat{F}_{\rm out}(k), \qquad \forall k \in \mathbb{Z}^d \setminus \{0\}, \tag{2}
$$

with $\mu_{\rm in} \neq \mu_{\rm out}$. Then:

- ▶ the eigenvalue of A the closest to $\lambda_* = \frac{\mu_{\text{in}} \mu_{\text{out}}}{2}$ n is of multiplicity one;
- **▶ there exists** $\epsilon > 0$ **such that for large enough n every other** eigenvalue is at a distance at least ϵn .

Remark 1. This implies that μ_{in} and μ_{out} are constant, so the average degrees are $\Theta(n)$.

Remark 2. In the case of the GBM $(F_{\text{in}}(x) = 1(|x| \le r_{\text{in}}))$ and $F_{\text{out}}(x) = 1(|x| \le r_{\text{out}})$, we showed that conditions (1)-(2) hold true for all but a zero Lebesgue measure set of parameters r_{in} , r_{out} .

KORK EXTERNS ORA

[Spectral Clustering on geometric graphs](#page-3-0)

[Soft Geometric Block Model \(SGBM\)](#page-3-0) [Failure of spectral clustering on geometric graphs](#page-5-0) [Higher-order spectral clustering \(HOSC\)](#page-10-0) [Proof ingredients](#page-15-0)

[Numerical results](#page-18-0) [Synthetic data sets](#page-18-0) [Real data set](#page-21-0)

Numerical experiments on GBM (1)

Figure: Blue curve: evolution of the accuracy with $r_{\rm in}$, for a GBM with $n = 3000$ and $r_{\text{out}} = 0.06$. Red curve: index of the ideal eigenvector.

Numerical experiments on GBM (2)

Figure: Accuracy obtained on 1-dimensional GBM for different clustering methods. Results are averaged over 50 realizations, and error bars show the standard error.

[1] Galhotra, Mazumdar, Pal, Saha: The geometric block model. In Proceedings of the AAAI Conference on Artificial Intelligence. [2] Galhotra, Mazumdar, Pal, Saha: Connectivity of random annulus graphs and the geometric block model. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (2019)

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$

 Ω

[Spectral Clustering on geometric graphs](#page-3-0)

[Soft Geometric Block Model \(SGBM\)](#page-3-0) [Failure of spectral clustering on geometric graphs](#page-5-0) [Higher-order spectral clustering \(HOSC\)](#page-10-0) [Proof ingredients](#page-15-0)

[Numerical results](#page-18-0)

[Synthetic data sets](#page-18-0) [Real data set](#page-21-0)

Real data set (1)

k-nearest neighbour graph $(k = 10)$ of 1000 images of digits (7,9) selected from MNIST.

Figure: Clustering accuracy per eigenvector. Right: all eigenvectors. Left: zoom on the first 15 eigenvectors.

Real data set (2)

Same subsample of the MNIST (7,9) data set, representation using the Kamada-Kawai layout.

(d) 4th eigenvector (e) 6th eigenvector (f) 9th eigenvector

[Spectral Clustering on geometric graphs](#page-3-0) [Soft Geometric Block Model \(SGBM\)](#page-3-0) [Failure of spectral clustering on geometric graphs](#page-5-0) [Higher-order spectral clustering \(HOSC\)](#page-10-0) [Proof ingredients](#page-15-0)

[Numerical results](#page-18-0)

[Synthetic data sets](#page-18-0) [Real data set](#page-21-0)

Directions of further research

Takeaway message

If you use spectral clustering methods, check higher-order eigenvectors, they can be more effective! Especially if you deal with geometry.

Future work

▶ Model parameters

Is it possible to determine μ_{in} and μ_{out} from the observed graph?

▶ More clusters

How to choose the eigenvector(s) if we have $K > 2$ clusters?

\blacktriangleright Sparse regime

The current technique does not work if the average degree is $o(n)$. What to do?

\blacktriangleright Weighted graphs

Can the results be easily transferred to models with weighted edges instead of the probability of edge appearance?

Reference: Avrachenkov, Bobu, Dreveton (2021). Higher-order spectral clustering for geometric graphs. Journal of Fourier Analysis and Applications, 27(2), 22.