UNIVERSAL LOWER BOUNDS AND OPTIMAL RATES: ACHIEVING MINIMAX CLUSTERING ERROR IN SUB-EXPONENTIAL MIXTURE MODELS

Maximilien Dreveton Alperen Gözeten Matthias Grossglauser Patrick Thiran

EPFL

July 1, 2024

INTRODUCTION

Clustering tasks of grouping *n* data points X_1, \dots, X_n in \mathbb{R}^d into *k* clusters.

Mixture model

- ▶ $z \in [k]^n$ cluster labeling vector, family $\mathcal{F} = \{f_1, \cdots, f_k\}$ of pdf
- $\blacktriangleright \forall i \in [n]: X_i \mid z_i \sim f_{z_i}$

Statistical problem : recover *z* (up to a permutation) based on the observation of *X* only (we also assume *k* is known). Let $\hat{z} = \hat{z}(X)$ be an estimator of *z*. We define the *loss* of \hat{z} as

$$\operatorname{loss}(z, \hat{z}) = \min_{\tau \in \operatorname{Sym}(k)} \frac{1}{n} \sum_{u=1}^{n} \mathbb{1}\{z_u \neq \tau(\hat{z}_u)\},$$

where Sym(k) is the group of permutations of [k] (we can only recover the *partition*, not the *labels*).

Minimax rate:

$$\inf_{\hat{z}} \sup_{z \in [k]^n} \mathbb{E}_{X \sim \mathsf{MM}(z, f_1, \cdots, f_k)} \left[\operatorname{loss}(\hat{z}, z) \right]$$

1	Introduction			•					•	•	•						•		•					•	•	•	•		•			•	•	•	•	•	•									. 1	l
•	muouucuon	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	-	•	•	-		i

2	Minin	nax rates in mixture models	2
	2.1	Gaussian mixture models: signal to noise ratios	2
	2.2	(Non-gaussian) mixture models: Chernoff information	6
	2.3	Example: Laplace mixture model	9

3	Conclusion			•			•		•				-	-	-		-		•	•			•					-	•	•		•					-				-	-				-		-		. '	13	}
---	------------	--	--	---	--	--	---	--	---	--	--	--	---	---	---	--	---	--	---	---	--	--	---	--	--	--	--	---	---	---	--	---	--	--	--	--	---	--	--	--	---	---	--	--	--	---	--	---	--	-----	----	---

MINIMAX RATES IN GAUSSIAN MIXTURE MODELS ISOTROPIC GMM

Isotropic Gaussian mixture models (GMM): $X_i | z_i \sim \text{Nor}(\mu_{z_i}, \sigma^2 I_d)$

Theorem 1 (Lu and Zhou, 2016: minimax rate in isotropic GMM)

Let
$$\Delta = \min_{a \neq b} \|\mu_a - \mu_b\|_2$$
. Suppose $\frac{\Delta}{\sigma \log(k)} \gg 1$. Then,

$$\inf_{\hat{z}} \sup_{z \in \mathcal{Z}_{n,k,\beta}} \mathbb{E}_{X \sim \text{GMM}(z,\mu_1,\cdots,\mu_k)} \left[\text{loss}(\hat{z},z) \right] \ \asymp \ \exp\left(-(1+o(1)) \frac{\Delta^2}{8\sigma^2} \right).$$

If $\frac{\Delta}{\sigma} + \log(k) = O(1)$, then $\inf_{\hat{z}} \sup_{z \in \mathcal{Z}_{n,k,\beta}} \mathbb{E}_{X \sim \text{GMM}(z,\mu_1,\cdots,\mu_k)} [loss(\hat{z},z)] \ge c$ for some constant c > 0.

Rate optimal algorithms: Lloyd's algorithm (Lu & Zhou, 2016); spectral clustering (Löffler, Zhang & Zhou, 2021) (assuming $d \leq n$).

MINIMAX RATES IN GAUSSIAN MIXTURE MODELS

FROM ISOTROPIC TO ANISOTROPIC GMM

Recall: $\inf_{\hat{z}} \sup_{z \in \mathcal{Z}_{n,k,\beta}} \mathbb{E}_{X \sim \text{GMM}(z,\mu_1,\cdots,\mu_k)} [\operatorname{loss}(\hat{z},z)] \simeq e^{-(1+o(1))\frac{\text{SNR}^2}{8}}$ where $\text{SNR} = \frac{\min_{a \neq b} \|\mu_a - \mu_b\|}{\sigma}$. **GMM with Homogeneous Covariance Matrices**: $X_i | z_i \sim \operatorname{Nor}(\mu_{z_i}, \Sigma)$ Then $\Sigma^{-1/2} X_i \sim \operatorname{Nor}(\Sigma^{-1/2} \mu_{z_i}, I_d)$, and the SNR exponent in the minimax rate becomes:

 $\min_{a \neq b} \|\Sigma^{-1/2}(\mu_a - \mu_b)\|_2 = \min_{a \neq b} \|\mu_a - \mu_b\|_{\Sigma} \quad \text{(Mahalanobis distance)}.$

MINIMAX RATES IN GAUSSIAN MIXTURE MODELS

FROM ISOTROPIC TO ANISOTROPIC GMM

Recall: $\inf_{\hat{z}} \sup_{z \in \mathbb{Z}_{n,k,\beta}} \mathbb{E}_{X \sim GMM(z,\mu_1,\cdots,\mu_k)} [loss(\hat{z},z)] \simeq e^{-(1+o(1))\frac{SNR^2}{8}}$ where $SNR = \frac{\min_{a \neq b} \|\mu_a - \mu_b\|}{\sigma}$. **GMM with Homogeneous Covariance Matrices**: $X_i | z_i \sim Nor(\mu_{z_i}, \Sigma)$ Then $\Sigma^{-1/2} X_i \sim Nor(\Sigma^{-1/2} \mu_{z_i}, I_d)$, and the SNR exponent in the minimax rate becomes:

 $\min_{a \neq b} \|\Sigma^{-1/2}(\mu_a - \mu_b)\|_2 = \min_{a \neq b} \|\mu_a - \mu_b\|_{\Sigma} \quad \text{(Mahalanobis distance)}.$

GMM with inhomogeneous Covariance Matrices: $X_i | z_i \sim \text{Nor}(\mu_{z_i}, \Sigma_{z_i})$ Chen and Zhang, 2021 show that the SNR should be replaced by $\min_{a \neq b} \text{SNR}'_{a,b}$

MINIMAX RATES IN GAUSSIAN MIXTURE MODELS

FROM ISOTROPIC TO ANISOTROPIC GMM

1

Recall: $\inf_{\hat{z}} \sup_{z \in \mathbb{Z}_{n,k,\beta}} \mathbb{E}_{X \sim \text{GMM}(z,\mu_1,\cdots,\mu_k)} [\operatorname{loss}(\hat{z},z)] \simeq e^{-(1+o(1))\frac{\text{SNR}^2}{8}}$ where $\text{SNR} = \frac{\min_{a \neq b} \|\mu_a - \mu_b\|}{\sigma}$. **GMM with Homogeneous Covariance Matrices**: $X_i | z_i \sim \operatorname{Nor}(\mu_{z_i}, \Sigma)$ Then $\Sigma^{-1/2} X_i \sim \operatorname{Nor}(\Sigma^{-1/2} \mu_{z_i}, I_d)$, and the SNR exponent in the minimax rate becomes:

 $\min_{a \neq b} \|\Sigma^{-1/2}(\mu_a - \mu_b)\|_2 = \min_{a \neq b} \|\mu_a - \mu_b\|_{\Sigma} \quad \text{(Mahalanobis distance)}.$

GMM with inhomogeneous Covariance Matrices: $X_i | z_i \sim \text{Nor}(\mu_{z_i}, \Sigma_{z_i})$ Chen and Zhang, 2021 show that the SNR should be replaced by $\min_{a \neq b} \text{SNR}'_{a,b}$ where

$$SNR'_{a\neq b} = 2 \min_{x\in \mathcal{B}_{ab}} \|x\|$$

$$\mathcal{B}_{a,b} = \left\{ x \in \mathbb{R}^{d} : x^{T} \Sigma_{a}^{1/2} \Sigma_{b}^{-1} (\mu_{a} - \mu_{b}) + \frac{1}{2} x^{T} \left(\Sigma_{a}^{1/2} \Sigma_{b}^{-1} \Sigma_{a}^{1/2} - I_{d} \right) x \\ \leq -\frac{1}{2} (\mu_{a} - \mu_{b})^{T} \Sigma_{b}^{-1} (\mu_{a} - \mu_{b}) + \frac{1}{2} \log |\Sigma_{a}| - \frac{1}{2} \log |\Sigma_{b}| \right\}.$$

FROM ISOTROPIC TO ANISOTROPIC GMM

WHERE DOES THIS COME FROM?

Main idea: for *each* data point X_i , we test $X_i \sim Nor(\mu_1, \Sigma_1)$ versus $X_i \sim Nor(\mu_2, \Sigma_2)$.

Lemma 1 (Testing Error for Quadratic Discriminant Analysis (Chen & Zhang, 2021))

Consider two hypotheses H_0 : $Y \sim Nor(\mu_1, \Sigma_1)$ and H_1 : $Y \sim Nor(\mu_2, \Sigma_2)$. Define a testing procedure

$$\phi(x) = \mathbb{1}\{\log f_1(x) < \log f_2(x)\} = \mathbb{1}\left\{\log |\Sigma_1| + (x - \mu_1)^T \Sigma_1^{-1} (x - \mu_1) \ge \log |\Sigma_2| + (x - \mu_2)^T \Sigma_2^{-1} (x - \mu_2)\right\}.$$

Then $\inf_{\hat{\phi}}(\mathbb{P}_{H_0}(\hat{\phi}=1) + \mathbb{P}_{H_1}(\hat{\phi}=0)) = \mathbb{P}_{H_0}(\phi=1) + \mathbb{P}_{H_1}(\phi=0)$ (Neyman-Pearson). If $\min\{\mathrm{SNR}'_{1,2}, \mathrm{SNR}'_{2,1}\} \to \infty$, we have

$$\mathbb{P}_{H_0}(\phi = 1) + \mathbb{P}_{H_1}(\phi = 0) \ \asymp \ e^{-(1+o(1))\frac{\left(\min\{\mathrm{SNR}'_{1,2}, \mathrm{SNR}'_{2,1}\}\right)^2}{8}}.$$

 $\textit{Otherwise, } \inf_{\hat{\phi}}(\mathbb{P}_{H_0}(\hat{\phi}=1)+\mathbb{P}_{H_1}(\hat{\phi}=0)) \geq \textit{c for some constant } c>0.$

Proof: complicated computations. Geometric interpretation: \approx okay

2	Minin	nax rates in mixture models	2
	2.1	Gaussian mixture models: signal to noise ratios	2
	2.2	(Non-gaussian) mixture models: Chernoff information	6
	2.3	Example: Laplace mixture model	9

3	Conclusion									•		•	•			-	-																-				•					•	•		13	3
---	------------	--	--	--	--	--	--	--	--	---	--	---	---	--	--	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	---	--	--	--	--	---	---	--	----	---

FROM ISOTROPIC TO ANISOTROPIC GMM

HYPOTHESIS TESTING: STANDARD SETTING

Let $\mathcal{Y} = (Y_1, \cdots, Y_n)$ and test $H_0: \mathcal{Y} \sim f^{\otimes n}$ versus $H_1: \mathcal{Y} \sim g^{\otimes n}$. If $f \neq g$ are *independent* of *n*, we have

$$\inf_{\hat{\phi}}(\mathbb{P}_{H_0}(\hat{\phi}=1)+\mathbb{P}_{H_1}(\hat{\phi}=0)) \ \asymp \ e^{-(1+o(1)) n \operatorname{Chernoff}(f,g)}$$

where we define the Chernoff information as

Chernoff
$$(f,g) = -\log \inf_{t \in (0,1)} \int f^t(x) g^{1-t}(x) dx.$$

(Note: Chernoff $(f^{\otimes n}, g^{\otimes n}) = n$ Chernoff(f, g). Key observation: $\mathbb{P}_{H_1}\left(\log \frac{f}{g}(x) > 0\right) = \mathbb{P}\left(e^{t\log \frac{f}{g}(x)} > 1\right) \leq \mathbb{E}_g\left[e^{t\log \frac{f}{g}}\right] = \int f^t g^{1-t} \leq e^{-\text{Chernoff}(f,g)}.$

Chernoff information between Gaussians

- Chernoff $\left(\operatorname{Nor}(\mu_1, \sigma^2 I_d), \operatorname{Nor}(\mu_2, \sigma^2 I_d)\right) = \frac{\|\mu_1 \mu_2\|_2^2}{8\sigma^2}$
- Chernoff $(Nor(\mu_1, \Sigma), Nor(\mu_2, \Sigma)) = \frac{1}{8} \|\Sigma^{-1/2}(\mu_1 \mu_2)\|_2^2$
- Chernoff (Nor(μ₁, Σ₁), Nor(μ₂, Σ₂)) still complicated

Provide another interpretation of SNRs.

MINIMAX RATES IN MIXTURE MODELS

CHERNOFF INFORMATION

Mixture model (MM): $X_i | z_i \sim f_{z_i}$ where $\mathcal{F} = \{f_1, \dots, f_k\}$ is a family of pdf. Define

$$\operatorname{Chernoff}(\mathcal{F}) = \min_{1 \le a \ne b \le k} \operatorname{Chernoff}(f_a, f_b).$$

Theorem 2 (Dreveton, Gözeten, Grossglauser, Thiran, 2024)

Suppose $Chernoff(\mathcal{F}) \gg \log k$. Then,

$$\min_{\hat{z}} \max_{z \in \mathcal{Z}_{n,\beta}} \mathbb{E}_{X \sim \mathsf{MM}(f_1, \cdots, f_k)} \left[\operatorname{loss}(z, \hat{z}) \right] = e^{-(1+o(1))\operatorname{Chernoff}(\mathcal{F})}$$

Algorithm 1: Clustering mixture models (known pdf).

Input: Set of *n* data points $(X_1, \dots, X_n) \in \mathcal{X}^n$, number of clusters *k*, family $\mathcal{F} = \{f_1, \dots, f_k\}$ of pdfs. **Output:** Predicted clusters $\hat{z} \in [k]^n$. 1 For $i = 1, \dots, n$ let $\hat{z}_i^{(t)} = \arg \max_{a \in [k]} \log f_a(X_i)$. **Return:** $\hat{z} = \hat{z}^{(t_{max})}$.

2	Minin	nax rates in mixture models
	2.1	Gaussian mixture models: signal to noise ratios
	2.2	(Non-gaussian) mixture models: Chernoff information
	2.3	Example: Laplace mixture model

3	Conclusion									•														•	•			-				-		•		-						•												1	3	
---	------------	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	--	--	---	--	--	--	---	--	---	--	---	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	---	---	--

LAPLACE MIXTURE MODEL

Algorithm 2: Lloyd-type algorithm for clustering parametric mixture models.

Input: Set of *n* data points $(X_1, \dots, X_n) \in \mathcal{X}^n$, parametric family $\mathcal{P}_{\Theta} = \{f_{\theta}, \theta \in \Theta\}$ of pdfs, number of clusters *k*, number of iteration t_{\max} , initial clustering $\hat{z}^{(0)} \in [k]^n$.

1 For $t = 1 \cdots t_{max}$ do

1. For
$$a = 1, \dots, k$$
, let $\hat{\theta}_a^{(t)} = \hat{\theta}\left(\{X_i : \hat{z}_i^{(t-1)} = a\}\right)$ be an estimate of θ_a ;

2. For
$$i = 1, \cdots, n$$
 let $\hat{z}_i^{(t)} = \arg \max_{a \in [k]} \log f_{\hat{\theta}_a^{(t)}}(X_i)$.

Return: $\hat{z} = \hat{z}^{(t_{\max})}$.

Previous work: Show that Algorithm 2 attain the minimax rate in *sub-gaussian* mixture models **Our contribution**: *sub-exponential* tails instead of sub-gaussian

Laplace mixture model: $\forall \ell \in [d]$: $X_{i\ell} = \mu_{z_i\ell} + \sigma_{z_i\ell}\epsilon_{i\ell}$ where $\epsilon_{i\ell} \sim \text{Lap}(0, 1)$ (pdf $f(x) = \frac{1}{2}e^{-|x|}$). Estimate mean and variance as:

$$\hat{\mu}(Y_1, \cdots, Y_m) = \frac{1}{m} \sum_{i=1}^m Y_i$$
 and $\hat{\sigma}(Y_1, \cdots, Y_m) = \frac{1}{m} \sum_{i=1}^m |Y_i - \hat{\mu}(Y_1, \cdots, Y_m)|.$

LAPLACE MIXTURE MODEL

Theorem 3 (Dreveton, Gözeten, Grossglauser, Thiran, 2024)

Suppose $\sum_{i=1}^{n} \mathbb{1}\{z_i = a\} \ge \alpha n/k$ for some constant $\alpha > 0$, $d = \Theta(1)$, $\sigma_{a\ell} = \Theta(1)$ and $\|\mu_a - \mu_b\|_1 = \Theta(d\rho_n)$ with $\rho_n \gg \sqrt{k}$ and $\log(z, \hat{z}^{(0)}) \ll 1/(k\rho_n)$. Then, the output \hat{z} of Algorithm 2 after $\Omega(\log n)$ iterations verifies

$$loss(z, \hat{z}) \leq e^{-(1+o(1))Chernoff(\mathcal{F})}$$
.

Remarks:

- We also show that $loss(z, \hat{z}^{(0)}) \ll 1/(k\rho_n)$ can be attained by spectral clustering
- If $\sigma_{1\ell} = \sigma_{2\ell} = \cdots = \sigma_{k\ell}$, then $\operatorname{Chernoff}(\mathcal{F}) = \min_{1 \le a \ne b \le k} \|\Sigma^{-1}(\mu_a \mu_b)\|_1$
- Similar results for other mixture models (such as exponential family mixtures) under sub-exponential assumptions

1	Introduction .	 	-						 					 					1

2	Minim	nax rates in mixture models	2
	2.1	Gaussian mixture models: signal to noise ratios	2
	2.2	(Non-gaussian) mixture models: Chernoff information	6
	2.3	Example: Laplace mixture model	9

3 Conclusion				
--------------	--	--	--	--

CONCLUSION

Summary:

- 1. Minimax rates in mixture models: Chernoff information is the key quantity
- 2. Lloyd-type algorithm attain the minimax rate when parameters (mean, variance) are unknown (in low dimension) and pdf have sub-exponential tails.

Possible extensions:

- Nixture models in high dimension $(d \gg n)$: if parameter are unknown, minimax rates are different. Isotropic Gaussian done? (Ndaoud, 2022); (Even, Giraud & Verzelen, 2024)
- Mixture models with tails heavier than sub-exponential
- Robustness to perturbations: mixture + random noise, mixture + adversary, mixture + outliers
- (Semi)-supervised rates (Lelarge & Miolane, 2019; Tifrea et al., 2024)